Plant Molecular Biology

Paula Duque

As sessile organisms, plants have evolved unique strategies to cope with environmental challenges that affect their growth and development. These range from morphological and physiological changes to alterations at the cellular level, but the basis for adaptation or acclimation lies ultimately at the level of the genome.

The Plant Molecular Biology group uses Arabidopsis thaliana as a model system to investigate how plants perceive and respond to environmental stress at the molecular level. In particular, we are focusing on the role of RNA alternative splicing in the regulation of gene expression. The versatility of this posttranscriptional regulatory mechanism suggests an important contribution in ensuring the developmental plasticity and stress tolerance essential for plant survival.

Another major project in the lab is uncovering a role for membrane transporters of the Major Facilitator Superfamily (MFS) in plant development and responses to abiotic stress. Interestingly, the functional analysis of these membrane proteins is revealing striking examples of the biological impact of alternative splicing in plants.