Alternative splicing, which generates multiple transcripts from the same precursor mRNA (pre-mRNA), is a key posttranscriptional regulatory mechanism for expanding proteomic diversity in higher eukaryotes. In plants, stress-associated genes are particularly prone to alternative splicing, which is also markedly affected by a wide variety of abiotic stresses, suggesting a role for this highly versatile gene regulation mechanism in the response to environmental signals. SR (serine/arginine-rich) proteins are pivotal players in splice site selection and thus widely recognized as major modulators of alternative splicing. In plants, expression of these RNA-binding proteins is stress-regulated at multiple levels, indicating that they could act as central coordinators in alternative splicing control of stress responses. Indeed, our ongoing work is providing functional links between these splicing factors and plant stress tolerance, in particular via modulation of the abscisic acid (ABA) pathway. We are investigating the functional significance of SR proteins and alternative splicing in plant stress responses using a combination of reverse genetics and molecular/cell biology tools. To identify the physiological transcripts targeted by SR proteins found to confer tolerance to abiotic stress, biochemical and transcriptome-wide approaches are being used to analyze plants where these splicing factors have been mutated or overexpressed. The elucidation of the biological relevance of alternative splicing is not only crucial for a fundamental understanding of the physiology of the plant, but could also have important applications in agriculture.