To tackle these challenging research lines, we use Xenopus laevis and zebrafish as animal systems. As cellular models for collective migration we study cranial neural crest cells (during embryo development) and mesenchymal cells (during tail regeneration). In addition, we count with a cutting-edge toolbox including in vivo-Atomic Force Microscope, self-referring vibrating probes systems, pressure nano-sensors, microfluidics, among other biophysical equipment. This, in combination with our molecular tools allow us not only to measure biophysical properties in vivo, but also to modify these properties to assess their role in collective cell motion.