Mechanisms of influenza A virus assembly

Viral assembly is a fascinating molecular biology process. Once a virus enters a cell and replicates, it needs to form new virions that are composed of viral genome and specific proteins. These components, synthesized in distinct cellular organelles, are therefore required to meet at specific cellular locations to form a supra-molecular complex. In the case of influenza A virus this process is particularly challenging because the viral genome is segmented, formed by eight independent RNA units. The formation of the genomic complex and the biological processes facilitating the assembly of viral genome are ill-defined. Formation of IAV genomic complex is a complex selective process, as virions do not usually package more than eight segments and each segment generally occurs once per virion. Although it is well established that viral assembly takes place at the plasma membrane, it is still unclear where the genomic complex is formed. Recently, we demonstrated that influenza A virus (IAV) establishes viral inclusions that favor infection. We propose that viral inclusions constitute dedicated sites for the assembly of influenza genomes. Two interesting concepts have arisen from our work:

  1. viral inclusions have liquid properties;
  2. there is a close association between viral inclusions and the endoplasmic reticulum.

The lab is currently investigating these topics and exploring their potential as antiviral targets.

Updated on 08 january 2020

Cookies settings

Cookies Selection

This website uses cookies to improve your browsing experience, security, and its website performance. We may also use cookies to share information on social media and to display messages and advertisements personalised to your interests, both on our website and in others.